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Heat Capacity of fcc Calcium 
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The lattice entropy derived from the measured heat capacity at intermediate and 
high temperatures is analyzed to yield a weakly temperature dependent entropy 
Debye temperature. An unusual temperature dependence of this quantity may 
be a sign of error in the heat capacity data. When this analysis is applied to heat 
capacity data recommended by Hultgren et al. (1973) for 20 nontransition 
metals, the result for fcc Ca stands out as anomalous. We have reconsidered 
heat capacity data of fcc Ca and find that measurements by Eastman et al. 
(1924), which were given little weight by Hultgren et al., are consistent with a 
normal behavior of the entropy Debye temperature up to 450 K. 
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1. I N T R O D U C T I O N  

The Debye temperature Os(T) associated with the vibrational entropy is a 
quantity which is slowly varying with the temperature T when T ~ Os/3. It 
is well defined and easy to calculate also when anharmonic effects, includ- 
ing thermal expansion, are present. See, e.g., Martin [1] for an analysis of 
alkali metals. Kinks or other unusual features in Os(T ) may be a sign of 
error in the experimental heat capacity data used to evaluate Os(T ). We 
have applied this idea in an analysis of almost all nontransition metals 
using the heat capacity data recommended by Hultgren et al. [2]. Most of 
the metals showed a very uniform behavior of Os(T ) with fcc calcium as a 
conspicuous exception. In thi s paper, we shall argue that the heat capacity 
data by Eastman et al. [3] for fcc Ca, which were given little weight by 
Hultgren et al. [2], are to be preferred over a wide temperature interval. 
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2. A DEBYE TEMPERATURE FIT TO THE LATTICE ENTROPY 

Let Cp be the measured lattice heat capacity at constant pressure. Sp is 
the corresponding entropy and S(O/T) is the entropy in a Debye model. 
We define an "entropy" Debye temperature Os(T ) for each temperature T 
by 

S(Os/T ) = Sp(T) = s  Cp(T') T' dT' (1) 

When the phonon density of states F(~0) is that of a Debye model, Os(T ) is 
constant and equal to the Debye temperature 0 D. For a general F(~o), but 
still with strictly harmonic lattice vibrations, 0 s (T) has a high temperature 
expansion related to frequency moments of F(~). From ref. [4], we can 
write 

es(T) = e(o)( 1+ n=lk a. T-2"] (2) 

(See the appendix.) In a real solid we have to add effects of anharmonicity. 
To lowest order in perturbation theory, a particular phonon mode (q, ~) has 
the frequency 

~(q, X) = co~ X) + A 2 + A 3 + A 4 (3) 

where t9 ~ is the "harmonic" frequency at T = 0 K. Thermal expansion gives 
a shift A2(q,h; V(T)). The increased vibrational amplitude at finite T, 
present even at constant volume, gives rise to the shifts A3(T ) and A4(T); 
see, e.g., Cowley and Cowley [5] for details. The shifts in Eq. (3) are not the 
same for all modes (q, ~), but at high temperatures, they are all linear in T. 
In an Einstein phonon model, all A 2 are proportional to n and all A 3 

"I-m 4 are proportional to n + 1/2, where n is the Bose-Einstein factor 
[exp(0e/T) - 1]-1. To lowest order in (A 2 -'l- A 3 "-t- A4)/o) 0, we get a correct 
result for Os(T ) if we add to the Os(T ) of Eq. (2), which here refers to 
constant volume V(T = 0), an anharmonic shift AOs(T): 

AOs(T)/O(O ) = k[exp(OE/T) - 1 ] - '  (4) 

where k is a constant. The term A3(T = 0) -t- A4(T = 0) will be included in 
0(0). The Einstein temperature is chosen so that the Debye and the Einstein 
expressions for the heat capacity are equal at high temperatures, i.e., 

0 e ~ / ( 3 / 5 )  0(0) = 0.770(0). 
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In a metal, the electronic heat capacity Cet must be subtracted from 
the measured Cp before we apply Eq. (1). At low temperatures, Cel = y0 T. 
The prefactor ~'0 can be written 7o = ,/b(1 +X) where "/b is the band 
structure result and 1 + X is an electron-phonon mass enhancement factor. 
At high temperatures the many-body correction is absent and the entropy is 
Yb T. We shall use an Einstein phonon model to account for the gradual 
disappearance of the electron-phonon enhancement in the entropy. Details 
are given elsewhere [6]. In transition metals, it may also be necessary to 
allow for a rapidly varying electron density of states near the Fermi level 
and to find the electronic entropy by numerical integration. 

The solid curve in Fig. 1 (for potassium) shows a typical behavior of 
Os(T ) derived from the measured Cp[2] and corrected for C~t. At low 
temperatures, Os(T ) varies because F(~) does not have the Debye form. At 
high temperatures, Os(T ) varies due to anharmonic effects, including ther- 
mal expansion. There is an intermediate temperature range, where the 
terms up to n = 2 in Eq. (2) give a good account of the variation due to the 
shape of F(~0), and Eq. (4) reasonably describes the anharmonicity. Higher 
order anharmonic effects and the vacancy contribution to Cp are small at 
such temperatures. 

These considerations suggest that the expression 

OIs(T) = 0(0){ 1 + a1(0(0)'0(2))772 

a2(0(0 ), 0(2), 8(4)) k ] 

+ T 4 at" exp[(O.770(O)/T 1 - 1 ] (5) 

can be fitted to Os(T ) over a rather wide range of temperatures around 
8(0). In calculations for 20 nontransition metals, using Cp from Hultgren et 
al. [2], we find that numerically stable values of the parameters 8(0), 0(2), 
8(4), and k are usually obtained if we make a least squares fit in the 
approximate temperature interval 0.50(0)-1.50(0). A characteristic result is 
shown in Fig. 1. The middle curve (long and short dashes) is the fitted 
0sI (T), extrapolated to high temperatures. The upper curve (short dashes) is 
Of(T) when k = 0, i.e., the "harmonic" part of Os(T ). For the elements Li, 
Na, K, Rb, Cs, Be, Mg, Zn, Cd, Hg, A1, Ga, Sn, Pb, Cu, and Au, 
(ofs(T)- Os(T))/O(O ) =--6(T) has the characteristic form exemplified by 
the shaded area in Fig. 1. The quantity 6(T) is zero below T ~  Tm/2 and, in 
most cases, has increased to 8 -- 0.02 to 0.03 at the melting temperature T m . 
We shall call this the "normal" behavior. Fcc calcium is a notable excep- 
tion, which motivates a reconsideration of the recommended Cp data. 
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Fig. 1. The entropy Debye temperature Os(T ) based on the experimental lattice heat capacity 
Cp for potassium [21 (solid line); our fitted Of(T) ( - - - - - ) ;  and the "harmonic" Os(T ) (- - -), 
which does not include the last term in Eq. (5). The shaded area defines 8(T). 

Similar,  bu t  smaller,  features  in Os(T ) are  also found  for In  and  T1, and  a 
small  i r regular i ty  is present  in Os(T ) for A g  near  0.STm. Resul ts  on the 
inf luence of anha rmon ic i t y  and  vacancy  fo rma t ion  on  8 (T) ,  which was our  
ma in  reason for a s tudy of Os(T ), will be  pub l i shed  elsewhere [7]. 

3. R E C O N S I D E R A T I O N  OF Cp D A T A  FOR FCC C A L C I U M  

Figure  2 shows Os(T ) and  Of(T) as ob t a ined  f rom the Cp da t a  

r e c o m m e n d e d  by  Hu l tg ren  et al. [2]. The  fit to Of(T) was m a d e  in the 
in terval  60-180  K,  i.e., be low the t empera tu res  where  we f ind s ignif icant  
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Fig. 2. The same results as in Fig. 1 but for fcc calcium, based on data recommended by 
Hultgren et al. [2]. The line . . . .  is Os(T ) when Cp has the form given in Fig. 3. 
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Fig. 3. The total heat capacity C e recommended by Hultgren et al. [2] for fcc calcium (solid 
line), Cp used in the calculation of the lower Os(T ) in Fig. 2 ( . . . .  ), and Cp measured by 
Eastman et al. [3] (circles). The short dashed curve is derived from the values recommended in 
the Russian compilation [10]. 

anomalies in Cp. For Cet, we used y0 = 3 .00•  10 -3 J . m o 1 - 1 .  K -1 and 
1 + )t = 1.3, with an Einstein model (0 e = 0.770(0)) representation of )t(T) 
as described in [6]. Our fitted Of(T) has 0 (0 )=  233 K, 0 (2 )=  244 K, 
0(4) = 253 K, and k = 0.0269. We had no difficulty in obtaining numeri- 
cally stable values for the fitting parameters when the fitting interval was 
varied, and the regularity of 0(0), 0(2), and 0(4) is as expected. However, it 
is obvious from Fig. 2 that fcc Ca does not have a "normal" Os(T) at high 
temperatures. 

Above 200 K there are few heat capacity measurements on calcium. 
Hultgren et al. chose to make a smooth interpolation which joins on to the 
heat content measurements of Jauch [8] (quoted by Kubaschewski [9]) in 
the interval 573-1234 K. In doing so, they discard data by Eastman et al. 
[3] for fcc Ca in the range 373-673 K. 

Let us now assume that Cp is given by the upper (dashed) curve in Fig. 
3, which goes approximately through the data points of Eastman et al. The 
corresponding Os(T ) is shown in Fig. 2 as the lower curve (solid plus a 
dashed high temperature part). That result agrees very well with our 
anticipated "normal" behavior up to approximately 450 K. At still higher 
temperatures, the difference between the curves labelled "Eastman et al." 
and "fit" is roughly twice as large as is "normal" for 8(T).  (The T m of bcc 
Ca is 1112 K.) We therefore expect that the true C e of fcc Ca above 450 K 
gradually approaches the value recommended by Hultgren et al. [2]. It 
should be remarked that a recent compilation of thermodynamic properties 
[10] gives a Cp which lies roughly midway between the data of Hultgren et 
al. and Eastman et al. 
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4. CONCLUSIONS 

We have analyzed the entropy Debye temperature Os(T ) from ~Os/2 
to ~ T m for Li, Na, K, Rb, Cs, Be, Mg, Ca, Zn, Cd, Hg, A1, Ga, In, T1, Sn, 
Pb, Cu, Ag, and Au using the C e values recommended by Hultgren et al. 
[2]. With the exception of Ca, In, T1, and Ag, a very regular and "normal" 
behavior of Os(T ) was found, which corroborates the recommended data. 
The most conspicuous exception was fcc calcium, which has led us to 
suggest that measurements by Eastman et al. [3] should be preferred over a 
wide range of temperatures. Indium and thallium show a Os(T ) similar to 
that of fcc Ca, but not so pronounced, while Ag has only a minor 
irregularity in Os( T ) near Tin~2. 
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A P P E N D I X  

Define frequency moments ~o(n) for n > - 3  by 

w(n)=[fOO~176 l/n (6) 

with w" replaced by log w when n = 0. Corresponding Debye temperatures 
O(n) are defined so that a Debye model, for a given n, yields the correct 
0(n): 

. n l / n  

The parameters a I and a 2 in Eq. (2) are [4] 

al = 1 I02(0) __ 02(2)] (8) 

a'[ l 1 [04(4)_ 04(0)1 + a, a2 = ~ ~-  + 02(0) (9) 
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